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We calculate analytically the electron-ion temperature equilibration rate in a fully ionized, weakly to mod-
erately coupled plasma, using an exact treatment of the Fermi-Dirac electrons. The temperature is sufficiently
high so that the quantum-mechanical Born approximation to the scattering is valid. It should be emphasized
that we do not build a model of the energy exchange mechanism, but rather, we perform a systematic first
principles calculation of the energy exchange. At the heart of this calculation lies the method of dimensional
continuation, a technique that we borrow from quantum field theory and use in a different fashion to regulate
the kinetic equations in a consistent manner. We can then perform a systematic perturbation expansion and
thereby obtain a finite first-principles result to leading and next-to-leading order. Unlike model building, this
systematic calculation yields an estimate of its own error and thus prescribes its domain of applicability. The
calculational error is small for a weakly to moderately coupled plasma, for which our result is nearly exact. It
should also be emphasized that our calculation becomes unreliable for a strongly coupled plasma, where the
perturbative expansion that we employ breaks down, and one must then utilize model building and computer
simulations. Besides providing different and potentially useful results, we use this calculation as an opportunity
to explain the method of dimensional continuation in a pedagogical fashion. Interestingly, in the regime of
relevance for many inertial confinement fusion experiments, the degeneracy corrections are comparable in size
to the subleading quantum correction below the Born approximation. For consistency, we therefore present this
subleading quantum-to-classical transition correction in addition to the degeneracy correction.
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I. INTRODUCTION

We shall calculate the thermal equilibration rate between
Fermi-Dirac electrons and Maxwell-Boltzmann ions in a hot,
fully ionized plasma. We shall do so exactly to leading and
next-to-leading order in the plasma number density, and to
all orders in the electron fugacity, thereby providing an es-
sentially exact result for weakly to moderately coupled plas-
mas. We shall work out this problem for two reasons. First,
the result is different and is needed in some applications.
Second, our previous treatment in Ref. �1� of the plasma
stopping power was performed in great generality, and the
basic idea behind the dimensional continuation method, a
somewhat subtle analytic tool that we employ, may have
gotten lost in all the details. We shall use this opportunity of
a simpler and specific case to treat the method in a pedagogi-
cal fashion and to explain it clearly �2�.

Physical systems often contain disparate length or energy
scales. For example, plasma physics involves hard collisions
at short distances—ultraviolet physics, and soft interactions
at large distances entailing collective effects—infrared phys-
ics. The resulting interplay of short and long distances pro-
duces the familiar Coulomb logarithm. For the electron-ion
temperature equilibration rate, and for other such processes
involving disparate scales, it is rather easy to calculate the
leading contribution, namely, the overall factor in front of
this logarithm. Although the order of magnitude of this lead-
ing order term can usually be obtained from simple dimen-
sional analysis alone, calculating the additional dimension-
less factor inside the logarithm, the subleading term, is quite
difficult.

A different method �3� employing dimensional continua-
tion has been introduced to deal with such problems, a

method that makes the computation of the subleading as well
as the leading contributions tractable. This method is based
on tested principles of quantum field theory constructed over
the last fifty years, and it has been used successfully to cal-
culate well measured phenomena such as the Lamb shift �3�,
often with much more ease than traditional methods. Most
recently, the method has been exploited in Ref. �1� by
Brown, Preston, and Singleton �BPS� to provide an extensive
treatment of the charged particle stopping power in a plasma,
the energy loss per unit distance dE /dx of the charged pro-
jectile. One of the topics treated in BPS was the rate at which
electrons and ions in a spatially homogeneous plasma, start-
ing with different temperatures, come into thermal equilib-
rium at a common temperature. Here we shall extend this
work to include the case in which the electron fugacity is
sufficiently large that the electrons must be treated with a
degenerate Fermi-Dirac distribution. This is the case in
which Pauli blocking becomes of some importance.

The degeneracy effects that we treat here come into play
as the plasma temperature is lowered. We shall calculate the
rate for the general case in which the electrons are described
by a Fermi-Dirac distribution, with no approximations being
made to this distribution. That is, we shall perform the cal-
culation exactly to all orders in the electron fugacity

ze = e�e�e, �1.1�

where �e=1 /Te is the reciprocal of the electron temperature
and �e is the electron chemical potential. Note that we shall
always measure temperature in energy units so that �e does
indeed have the correct units of energy. We shall assume that
the plasma is at most moderately coupled, which often im-
plies that the degeneracy corrections are not large. Nonethe-
less, we shall work out the general case since this is just as
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easy as treating the case of only mild degeneracy, and the
general case may prove to have some application.

A plasma is seldom formed in thermal equilibrium; for
example, a laser preferentially heats the light electrons rather
than the heavy ions. While a nonequilibrium plasma will of
course eventually thermalize, it does so in several stages.
First, the electrons rapidly equilibrate among themselves to a
common temperature Te. Then, somewhat less rapidly, all the
various ions equilibrate to a common temperature TI. Finally,
the electrons and ions begin the process of thermal equilibra-
tion, with the electrons delivering their energy density to the
ions at a rate

dEeI

dt
= − CeI�Te − TI� . �1.2�

The minus sign of Eq. �1.2� is a convention that renders CeI
positive when energy flows from the electrons to the ions.

In what follows, we shall calculate the rate coefficient CeI
in the limit in which the scattering contribution is dominated
by quantum diffraction. We first establish our conventions
and notation in Sec. III, while in Sec. IV we describe the
calculational method that we employ in a detailed, pedagogi-
cal fashion since it involves a different and subtle technique.
The relation of our method to older approaches is sketched in
Sec. IV, and for clarity, some simple thermodynamical rela-
tions are reviewed in Sec. VI. Our method combines in an
unambiguous way the short-distance physics given by a
Boltzmann equation that includes the Pauli blocking of the
electrons and the long-distance physics described by a
Lenard-Balescu equation modified to include the effects of
this Pauli blocking. The explicit computation in these two
regimes is presented in Secs. VII and VIII. These results are
combined in Sec. IX to obtain the exact result for the rate
coefficient CeI to leading and next-to-leading order in the
plasma density and to all orders in the electron fugacity ze.
Appendix A contains the details of the plasma dielectric
function needed in the text.

The effects of Fermi-Dirac statistics and the accompany-
ing Pauli blocking only become appreciable as the tempera-
ture is lowered below the limit in which the scattering is
entirely dominated by quantum diffraction. Along with the
degeneracy correction, we must therefore include the first
classical correction, since these two mechanisms may be-
come of the same order of magnitude. Appendix B extracts
the first classical correction from the general result given in
BPS �1�.

As this outline of the paper shows, we must perform a
considerable amount of work to calculate CeI in an analytic
form. Hence to motivate our development, and to provide a
summary for a reader who may not be interested in all the
mathematical details, we first turn in Sec. II to provide a
brief compendium of our results. We do, however, urge the
reader to work through the main body of the text, since there
is no substitute for the calculation itself in illustrating the
relevant physics.

II. COMPENDIUM OF RESULTS

To provide an overview of our results, we start with the
result �9.9� for the rate coefficient, which we display below

for convenience. This expression for CeI is exact to all orders
in the electron fugacity, but valid only in a temperature re-
gime in which the short-distance scattering is described by
the quantum-mechanical first Born approximation:

CeI =
�I

2

2�
��eme

2�
��ee

22e�e�e

�e
3 �� ln �

exp	�e�e
 + 1

+
1

2�
l=1

�

�− 1�l+1 ln	l + 1
el�e�e� , �2.1�

where

ln � =
1

2ln� 16�

	e
2�e

2� − 
 − 1� . �2.2�

Here �I
2 is the sum of the squared ion plasma frequencies �i

2,
me is the electron mass, �e is the electron thermal wave-
length, and 	e

2 is the electron contribution to the squared
Debye wave number, including electron degeneracy effects.
The precise definition of these quantities is presented in Sec.
III, but we should note here that we employ rationalized
Gaussian units, so that the energy of two electrons of charge
e a distance r apart is given by e2 /4�r. The structure of the
first line that appears in our result �2.1� agrees with the pre-
vious result of Brysk �4� when his Eq. �35� is re-expressed in
terms of our notation. However, Brysk does not obtain the
precise result �2.2� for ln �, but rather only an approximate,
leading-log evaluation of the usual form ln	bmax /bmin
.
Moreover, Brysk �4� also does not obtain the second line of
our result �2.1�. This second line does not contribute in the
Maxwell-Boltzmann limit of very small fugactiy ze, but it
does a provide a significant first-order correction in ze.

The previous work of BPS �1� computed the exact tem-
perature equilibration rate for a weakly to moderately
coupled nondegenerate plasma. While this general result was
rather complicated, the high-temperature limit, in which the
short-distance Coulomb scattering is given by its first Born
approximation, has a rather simple form. The nondegenerate
rate coefficient of BPS can be obtained from Eq. �2.1� by
taking the small-fugacity limit ze→0, which gives

CeI
non-degen =

�I
2

2�
��eme

2�
��ee

2ne�ln �0, �2.3�

where the logarithm ln �0 above is the nondegenerate limit
of Eq. �2.2�. The term

	e0
2 � �ee

2ne �2.4�

in parentheses follows from the well known relation �3.12�
between number density and fugacity, and it is just the
square of the nondegenerate form of the electron’s Debye
wave number. The nondegenerate limit of Eq. �2.2� is accom-
plished by the substitution 	e→	e0, and expressing this re-
sult in terms of the electron plasma frequency provides the
form
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ln �0 =
1

2
ln� 8Te

2

�2�e
2� − 
 − 1� , �2.5�

where we have used the relation 	e0
2 �e

2 /2�=�2�e
2 /Te

2. The
rate coefficient of Eqs. �2.3� and �2.5� is just that given pre-
viously by Eq. �12.12� of BPS �1�, an expression that was
also quoted in Eq. �3.61� in the introductory portion of that
work. There is, however, one difference between Eq. �2.5�
and the result �12.12� of BPS. Namely, the correct term −

−1 appearing in Eq. �2.5� above was incorrectly written as
−
−2 in Eqs. �12.12� and �3.61� of BPS because of a tran-
scription error in passing between Eqs. �12.43� and �12.44�
of BPS. We have taken the opportunity here to correct this
mistake.

The general structure of the “Coulomb log” ln �0 with its
dependence upon the temperature has, of course, long been
known �5�. Equation �2.5�, however, gives the precise defi-
nition of the Coulomb log �in the nondegenerate limit� for
the temperature equilibration process we have been discuss-
ing, including the correct additional constant terms, namely,
the terms ln 8−
−1. We should, however, emphasize two
points. First of all, the Coulomb log is by no means a uni-
versal quantity, but rather its precise form is process depen-
dent. For example, the Coulomb log for electron conductiv-
ity differs from the Coulomb log for the electron-ion thermal
relaxation rate given here �6�. Second, we should emphasize
that the Coulomb log for the relaxation rate does not depend
upon the ion temperature TI but only upon the electron tem-
perature Te. Some authors �6� incorrectly replace the squared
electron Debye wave number 	e

2 by the fully screened Debye
wave number 	D

2 =	e
2+	I

2. This incorrectly includes the ion
contribution 	I

2, and thus introduces a spurious dependence
on the ion temperature TI.

If the plasma temperature becomes very low, then the
population of bound states must be taken into account. In
such a regime, our assumption that the plasma is fully ion-
ized and weakly coupled breaks down, and our calculation is
no longer reliable. Hence we shall discuss and examine in
detail only the limit in which the degeneracy corrections are
mild, the regime in which the temperature is not too low and
the electron fugacity is not too large. In this limit, only the
first-order fugacity contribution from the general result �2.1�
need be retained, and therefore the second line in Eq. �2.1�,
the term omitted by Brysk �4�, makes an essential contribu-
tion. As the temperature is lowered, however, the subleading
contribution to the Born approximation becomes comparable
to the degeneracy correction, and it too must also be ac-
counted for. In Appendix B, we therefore extract this sub-
leading correction in the transition region between quantum
and classical scattering from the general result given in BPS.
In the following, these two types of corrections will be called
the degeneracy correction and the �first� quantum-to-classical
transition correction.

Working to leading order in the fugacity, we only need to
expand Eq. �2.1� to linear order in ze=e�e�e, a result con-
tained in Eq. �9.15�. The quantum-to-classical transition cor-
rection is contained in Eq. �B33�. Expressing the fugacity
correction in terms of the density according to Eq. �3.18�, the
rate coefficient CeI reads

CeI �
�I

2

2�
��eme

2�
��ee

2ne�1

2
ln� 8Te

2

�2�e
2� − 
 − 1�

+
ne�e

3

2 �− �1 −
1

23/2�1

2
ln� 8Te

2

�2�e
2� − 
 − 1�

+ �1

2
ln 2 +

1

25/2�� −
�H

Te
�

i

Zi
2�i

2

�I
2

��3��ln� Te

Zi
2�H

� − 
� − 2���3��� , �2.6�

where the numerical values of the zeta function and its de-
rivative are

��3� = �
k=1

�
1

k3 = 1.202 05 . . . , �2.7�

and

���3� = − �
k=1

�
1

k3 ln k = − 0.198 12 . . . . �2.8�

We also write Zi as the ionic charges in units of the electron
charge e. Before examining expression �2.6� in detail, we
note that the first line is the leading rate coefficient calcu-
lated in BPS �1�, Eq. �2.3� above; the second term in curly
braces is the first degeneracy correction following from Eq.
�2.1�; and the remaining third term corresponds to the first
quantum-to-classical transition calculated in Appendix B.

In the last term of Eq. �2.6�, the ratio �H /Te describes the
relative size of the correction, where

�H = � e2

4�
�2 me

2�2 � 13.6 eV �2.9�

is the binding energy of the hydrogen atom. For some tem-
perature and number density regimes of interest, the second
and third terms in Eq. �2.6� become comparable in size.
Hence while our main thrust in this paper is degeneracy cor-
rections, we must also take into account this first quantum-
to-classical transition.

It is conventional to write the Coulomb logarithm as
ln	bmax /bmin
, where bmax is a Debye length long-distance
cutoff, while bmin is a short-distance cutoff that, depending
upon the circumstances, is either a classical distance of clos-
est approach bcl�e2 /Te or a quantum wave length bqm��e.
Often, an interpolation is made �7� between these two limits
by writing

bmin
2 = bcl

2 + bqm
2 = bqm

2 1 +
bcl

2

bqm
2 � � bqm

2 1 +
�H

Te
� .

�2.10�

Such an interpolation gives a first correction proportional to
the proper quantum expansion parameter �H /Te, but it fails
entirely to produce the proper logarithmic behavior
��H /Te�ln	�H /Te
 displayed in the last term of Eq. �2.6�.

Figures 1 and 2 illustrate the size of the degeneracy and
the first quantum-to-classical transition corrections in an
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equimolar deuterium-tritium plasma, for electron number
densities of ne=1025 cm−3 and ne=1026 cm−3, respectively.
The solid curves denote the size of the degeneracy correc-
tions relative to the leading BPS term, the ratio of the second

to the first term of Eq. �2.6�. The dashed curves show the
corresponding size of the first quantum-to-classical transi-
tion, the ratio of the third to the first term of Eq. �2.6�. Note
that both corrections are comparable in magnitude between
these two electron number densities. We have plotted the
corrections for temperatures between Te=0.1 keV and Te
=10 keV. However, below about 0.5 keV, ionization and
other strongly coupled plasma effects become important, and
our formalism breaks down. Also, at these lower tempera-
tures, higher order fugacity terms in Eq. �2.1� become impor-
tant, and this could change the low-temperature behavior of
the solid curves; therefore, one should trust Eq. �2.6� only to
the right of the vertical dotted line at Te=0.5 keV. For den-
sities below ne=1025 cm−3, the degeneracy correction is
much smaller than the quantum-to-classical correction. The
situation is reversed for densities greater than ne
=1026 cm−3, where degeneracy effects dominate over the
quantum-to-classical corrections. Interestingly, the density
and temperature range in which the degeneracy and the
quantum-to-classical corrections are comparable lies in the
regime relevant for inertial confinement fusion.

III. CONVENTIONS AND NOTATION

We will treat the ions with Maxwell-Boltzmann statistics
and the electrons with Fermi-Dirac statistics. The thermal
equilibrium form of an ion phase space density f i�pi� thus
reads

f i�pi� = e−�i�Ei�pi�−�i�, �3.1�

while for electrons in thermal equilibrium,

fe�pe� =
1

e�e�Ee�pe�−�e� + 1
. �3.2�

Letting the index b refer to either the ions i or the electrons
e, the kinetic energy is

Eb�pb� =
pb

2

2mb
, �3.3�

and the inverse temperature and chemical potential are

�b = 1/Tb and �b. �3.4�

Since, in our intermediate calculations, we work in an arbi-
trary number of dimensions �, each species number density
will appear as

nb = gb� d�pb

�2���� fb�pb� , �3.5�

where gb is spin-degeneracy factor. For electrons ge=2. We
are using a notation for the distribution functions fb in which
the species index b implicitly includes spin degrees of free-
dom. It is inconvenient, however, to use this notation for the
number density nb. Measurements of the species density are
usually insensitive to spin degrees of freedom, and we shall
therefore denote the number density of the species �including
all the spins� by nb. This accounts for the factor of gb in Eq.
�3.5�. For the ions in thermal equilibrium, the integral �3.5� is

FIG. 1. �Color online� The relative size of the degeneracy cor-
rection and the first classical-to-quantum correction as a function of
temperature in keV. The plasma is equimolar deuterium-tritium at
an electron number density ne=1025 cm−3. These corrections are
relative to the leading nondegenerate BPS rate: the degeneracy cor-
rection �the solid line� is the ratio of the second to the first line in
Eq. �2.1�, while the classical-to-quantum correction �the dashed
line� is the ratio of the third to the first. The electron temperature
runs between values 0.1 and 10 keV. Our calculation ceases to be
valid at low temperatures, and this is indicated by the vertical dotted
line.

FIG. 2. �Color online� Same as Fig. 1, except the number den-
sity is ne=1026 cm−3. Again, the solid line is the degeneracy correc-
tion and the dashed line is the first quantum-to-classical correction.
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a product of trivial Gaussian integrals, and so

ni = gi�i
−�e�i�i, �3.6�

where we define the thermal wavelength for species b as

�b = ��2��b

mb
�1/2

. �3.7�

For the electrons in thermal equilibrium, we first pass to
hyperspherical coordinates to write

ne = ge
��−1

�2�����
0

�

p�−1dp
1

e�e�Ee�p�−�e� + 1
. �3.8�

Here ��−1 is the area of a unit hypersphere in a space of �
dimensions that is evaluated in the next section with the
result

��−1 =
2��/2

���/2�
. �3.9�

Changing to dimensionless variables,

x = �eEe�p� = �e
p2

2me
, �3.10�

allows us to express the electron number density as

ne = ge�e
−� 1

���/2��0

� dx

x

x�/2

e−�e�eex + 1
. �3.11�

When the quantity −�e�e becomes very large �and positive�,
Fermi-Dirac statistics pass to the Maxwell-Boltzmann limit,
with the denominator above becoming a simple exponential.
In this limit, the x integration becomes the standard repre-
sentation of ��� /2�, and we see that the number density in
this small fugacity limit is given by the Maxwell-Boltzmann
form �3.6�, as it must be. Expanding Eq. �3.11� to second
order in the fugacity ze=e�e�e and using ge=2 gives, for the
the physical case of three dimensions,

� = 3: ne �
2

�e
3e�e�e1 −

e�e�e

23/2 � . �3.12�

Note that the first correction, which decreases the number
density, is simply the fugacity divided by a numerical factor
of order unity. By small fugacity, we therefore mean that
e�e�e �23/2�2.8.

As we shall see in the following section, in a space of �
dimensions, the energy of two charges e a distance r apart is
proportional to e2 /r�−2. Since the units of a number density n
are �length�−�, we conclude that e2n has the units of energy
over length squared, independently of the spatial dimension
�. In particular,

�b
2 =

eb
2nb

mb
�3.13�

is the squared plasma frequency for species b with the fixed
dimension of an inverse-time squared, regardless of the spa-
tial dimensionality �. The situation for the squared Debye
wave number is essentially the same, except that, as noted in
Appendix A, in general, this quantity is defined in terms of

the fluctuations in the number density, and so

	b
2 = �beb

2 �nb

���b�b�
. �3.14�

For Maxwell-Boltzmann statistics, the derivative that ap-
pears here just reproduces the particle density in accord with
the fact that classical particles are described by Poisson sta-
tistics. However, for Fermi-Dirac statistics, one must use

�nb

���b�b�
=

gb�b
−�

���/2��0

� dx

x

x�/2e−�b�bex

�e−�b�bex + 1�2 � nb. �3.15�

The inequality that appears here implies that

	b
2 � �beb

2nb = 	b0
2 . �3.16�

For the dilute case in three dimensions, including the first
correction in the fugacity, the electron Debye wave number
is given by

� = 3: 	e
2 � �ee

2 2

�e
3e�e�e1 −

2

23/2e�e�e�
� �ee

2ne1 −
1

23/2e�e�e� . �3.17�

In the first-order fugacity correction that appears here we can
use the lowest-order result

ne �
2

�e
3e�e�e �3.18�

to compute the fugacity and thus write

� = 3: 	e
2 � �ee

2ne1 −
1

23/2
�e

3ne

2
� . �3.19�

IV. METHOD

Since the method of dimensional continuation that we
shall use is different and perhaps subtle, we present here a
pedagogical account of its basis.

A. Disparate length scales; expansion parameter

The electron-ion energy exchange brought about by their
collisions in a plasma involves a Coulomb interaction that is
Debye screened at large distances and, as we shall see in the
course of our work, cut off at short distances by quantum
effects. As we shall sketch below in Sec. IV C for arbitrary
spatial dimensions �, the familiar elementary description of
this energy transfer for �=3 dimensions involves the impact
parameter integral

�
bmin

bmax db

b
= ln�bmax

bmin
� . �4.1�

Here bmin is the minimum distance of closest approach that,
in the quantum limit that is relevant here, is set by the scale
of the electron thermal wavelength �e. That is, bmin is some
numerical constant times �e. The upper limit on the impact
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parameter integral is set by the electron Debye length 	e
−1,

with bmax some numerical multiple of 	e
−1. Thus

bmin

bmax
� �e	e. �4.2�

The purpose of the dimensional continuation method is to
precisely determine the numerical constants that appear here.

Our method applies when the ratio bmax /bmin is large: In
this case, the dimensionless parameter �e	e is small, and we
shall use it as our expansion parameter. As we noted in the
previous section, the Debye wave number 	e always has the
dimensions of an inverse length, even at arbitrary spatial
dimension �. Hence, �e	e is a convenient parameter to em-
ploy in our dimensional continuation scheme because it re-
mains dimensionless as the number of spatial dimensions � is
varied. Moreover, as we shall see, it is the combination �e	e
that directly arises as our computations progress.

The electron plasma coupling strength is characterized by
the ratio of the Coulomb electrostatic energy of two electrons
a Debye distance apart divided by the temperature. In the
physical space of three dimensions, �=3, this is the dimen-
sionless parameter

� = 3: ge = �e
e2	e

4�
. �4.3�

The perturbative expansion of plasma thermodynamic pa-
rameters involve a series of ascending integer powers �up to
additional logarithmic corrections� of the coupling constant
ge. Except for different conventions that can alter a trivial
overall factor, the electron quantum Coulomb parameter is
defined as the Coulomb energy for two electrons a thermal
wavelength apart divided by the temperature. For three di-
mensions, this reads

� = 3: �e = �e
e2

4��e
. �4.4�

Hence, in three dimensions,

� = 3: �e	e =
ge

�e
. �4.5�

Thus our expansion parameter �e	e is essentially the plasma
coupling parameter ge, albeit divided by the quantum param-
eter �e. Accordingly, one could equivalently work in terms of
the coupling ge as we have done in the past �1�, but here it is
more convenient to use �e	e, and so this we shall do.

Our work applies to fully ionized plasmas where the tem-
perature is large and thus the parameter �e is small. The
condition that �e	e be small requires that the plasma cou-
pling ge be even smaller than �e. To put this in perspective,
we recall that even if Fermi-Dirac statistics are required, the
Debye wave number is smaller than that given by the
Maxwell-Boltzmann form with the same temperature and
density. Hence we have

�e
2	e

2 � �e
2�ee

2ne, �4.6�

where the electron number density on the right-hand side of
this equation is given by Maxwell-Boltzmann statistics. Us-
ing now the number density �3.6� in the Maxwell-Boltzmann

limit and the definition �3.7� of the thermal wavelength, we
find that

�e
2�ee

2ne = 8�1/2e�e�e��H

Te
= 8�1/2e�e�e�13.6 eV

Te
.

�4.7�

Thus even for somewhat large electron fugacities e�e�e, the
expansion parameter �e	e will be small provided the tem-
perature is reasonably large.

To explain further the utility of �e	e as the appropriate
expansion parameter, we examine the situation when the spa-
tial dimension � departs from its physical value �=3. In this
case, as we shall soon see in the next subsection, the Cou-
lomb potential a distance r away from a point charge has the
dependence r−��−2�. Thus the plasma coupling and quantum
Coulomb parameters have the form

ge � �ee
2	e

�−2, �e � �e
e2

�e
�−2 , �4.8�

and so ge /�e���e	e��−2 or

�e	e � � ge

�e
�1/��−2�

. �4.9�

This emphasizes that although the form of the coupling �e	e
that we employ here does not change as the spatial dimen-
sion is altered, its form in terms of ge /�e does depend upon
this dimensionality.

B. Idea of dimensional continuation

We have already seen explicitly how a geometrical quan-
tity, namely, the number density, can be computed in a space
of arbitrary dimensionality �. In fact, all fundamental theo-
ries can be formulated in a world that has space of arbitrary
dimensionality. Modern quantum field theory, the mother of
all physical theory, is generally formulated for spaces of ar-
bitrary dimensionality in order to regulate it. �See, for ex-
ample, Ref. �9�.� The well known Born-Bogoliubov-Green-
Kirkwood-Yvon �BBGKY� hierarchy of coupled equations
that depicts general kinetics can obviously be written in a
space of arbitrary dimensionality �. For ��3, the Coulomb
force acts as a short-range force; for ��3, it acts a long-
range force. Although the complete BBGKY set of coupled
equations for Coulomb forces must remain valid for arbitrary
spatial dimensionality �, it cannot be approximated by the
Boltzmann or Lenard-Balescu equations for general � values.
To leading order in the density, the Boltzmann equation de-
scribes the short-distance, hard scattering correctly while the
Lenard-Balescu equation correctly describes the long-
distance, collective interactions. Hence, to this leading order,
the BBGKY hierarchy of equations reduces to the Boltzmann
equation for ��3, but for ��3, the BBGKY hierarchy re-
duces to the Lenard-Balescu equation. We shall see how this
works out in detail as our work progresses.

Here we introduce the idea of dimensional continuation
by examining the case of electrostatics. The Poisson equation
for a point charge Ze in � dimensions reads
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− �2�����r� = Ze�����r� . �4.10�

Its solution may be expressed as a Fourier integral:

�����r� =� d�k

�2���

Ze

k2 eik·r. �4.11�

As it stands, this integral is defined for all positive integer
dimensions �. As is well known from the theory of complex
functions, an analytic function is defined from its values on
the positive real integers, provided that the function does not
diverge rapidly at infinity in the complex plane �8�. But for
our equations, we can obtain this extension by explicit cal-
culations. For the case at hand, we first write

1

k2 �
1

k2 = �
0

�

dse−k2s, �4.12�

and interchange integrals to encounter

� d�k

�2���e−k2seik·r =� d�k

�2��� exp�− k − i
r

2s
�2

s�
exp�−

r2

4s
�

= � 1

4�s
��/2

exp�−
r2

4s
� . �4.13�

Here we have completed the square and used the variable in
the square brackets as the new integration variable to obtain
a product of � ordinary Gaussian integrals whose evaluation
produces the final result. The change of variables from s to
t=r2 /4s now gives

�����r� =
Ze

r�−2� 1

�
��/21

4
�

0

� dt

t
t��−2�/2e−t

=
Ze

r�−2� 1

�
��/21

4
��� − 2

2
� , �4.14�

since the t integral is a standard representation of the gamma
function. This result now defines an electrostatic potential for
any value of � in the entire complex plane.

As a mathematical application of this result, we note that
it gives the electric field

E�r� =
Zer̂

r�−1� 1

�
��/21

2
���

2
� . �4.15�

Hence Gauss’ law applied to a sphere of radius r,

S�r�r̂ · E�r� = Ze , �4.16�

informs us that this sphere has an area S=��−1r�−1 where

��−1 =
2��/2

���/2�
�4.17�

is the area of a ��−1�-dimensional unit hypersphere embed-
ded in the �-dimensional space.

There are physical implications that follow from Eq.
�4.14� of the electrostatic potential of a point charge in �
dimensions. These are brought out in Fig. 3. As the figure

shows, the Coulomb potential of a point charge becomes
more singular at the origin as the spatial dimension � in-
creases: the physics at short distances is increasingly empha-
sized as the spatial dimension � increases. Since short dis-
tances correspond to high wave numbers, this is equivalent
to stating that large � emphasizes ultraviolet physical pro-
cesses. Conversely, as the spatial dimension � decreases, the
potential falls off less rapidly at large distances: the physics
at large distances becomes ever more important as the spatial
dimension � decreases. Since long distances correspond to
low wave numbers, this is equivalent to stating that small �
emphasizes infrared physical processes. As we shall see, the
electron-ion energy exchange can be computed with the
Boltzmann equation for ��3 since it correctly accounts for
hard scattering. The result, however, has a simple pole that
diverges as �→3 from above. Conversely, the electron-ion
energy exchange can be computed from the Lenard-Balescu
equation for ��3 since it correctly accounts for the long-
range screening brought about by the collective, dielectric
effects in the plasma. The result, however, has a simple pole
and diverges as �→3 from below. These general features are
brought out in the simple computation of the next subsection.

C. Energy loss structure in � spatial dimensions

To illustrate the remarks that we have been making, we
consider the lowest-order energy loss of an electron passing
by a fixed point of charge Ze. In zeroth order, an electron
with impact parameter b and perpendicular velocity v, so
that b ·v=0, simply follows the straight line b+vt as a func-
tion of the time t. In first approximation, with the electric
field E given by Eq. �4.15�, the electron acquires a momen-
tum transfer

�p = − e�
−�

+�

dtE�b + vt� �4.18�

in passing by the fixed point charge Ze. This gives an energy
change

FIG. 3. �Color online� Short-distance or ultraviolet �UV� physics
dominates in dimensions ��3. Long-distance or infrared �IR�
physics dominates when ��3. UV and IR physics are equally im-
portant in �=3.
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�E =
�p2

2me
. �4.19�

It is a straightforward matter to check that this gives, up to
numerical factors of no importance,

�E �
1

me
�Ze2

v
�2� 1

b�−2�2

. �4.20�

In � spatial dimensions, an element of cross section is given
by d�=��−2b�−2db. Hence the weighted energy loss has the
form

� d��E � �
bmin

bmax db

b�−2 . �4.21�

This example explicitly demonstrates that large � is domi-
nated by short-distance physics and small � is dominated by
long-distance physics. Moreover, it shows explicitly that �
=3 is the dividing line between these two regions. To bring
this out, all we need do is to note that for ��3 the impact
parameter integral is not sensitive to the large distance cut-
off, and we may take the limit bmax→� to obtain

� � 3: I���� = �
bmin

� db

b�−2 =
bmin

3−�

� − 3
. �4.22�

Conversely, for ��3, we may set bmin=0, with

� � 3: I���� = �
0

bmax db

b�−2 =
bmax

3−�

3 − �
. �4.23�

The results displayed are the dominant forms in the two dif-
ferent regions of spatial dimensionality �.

D. Implementation of dimensional continuation

The situation that we have just described leads to a well
defined result because it is akin to the following example.
Suppose that we have a theory that is well defined in the
neighborhood of the physical dimension �=3, and that the
theory contains a small parameter �. Moreover, suppose that
we need to evaluate a function F that depends upon this
small parameter � in the following fashion. For ��3 the
leading behavior of F goes like �3−�, and the function F has
a simple pole in � as �→3 from above. Conversely, for �
�3, the leading behavior of the function F goes like ��−3 and
the function F has a simple pole in � as �→3 from below.
That is, we have the leading terms

� � 3: F���;�� = A�����3−�, �4.24�

and

� � 3: F���;�� = A������−3. �4.25�

Since the two contributions each have poles in �,

A���� =
R�

� − 3
+ r� + O�� − 3� , �4.26�

and

A���� =
R�

3 − �
+ r� + O�3 − �� . �4.27�

The function F��� ;�� is of leading order in the expansion
parameter � for ��3. Since it is an analytic function of �, it
may be continued throughout the complex � plane. When it
is analytically continued to ��3 it becomes of subleading
order. This behavior is depicted in Fig. 4. Exactly the con-
verse situation applies to the function F��� ;��.

Therefore in the neighborhood of �=3,

F��;�� = F���;�� + F���;�� = A�����3−� + A������−3

�4.28�

is accurate to leading and subleading order in �. For ��3,
the term with the coefficient A���� is dominant while that
with the coefficient A���� is subdominant. For ��3 the
roles of the the dominant and subdominant terms are inter-
changed. It should be emphasized that the addition of the two
terms contains no double counting since in each region one
term, and one term only, dominates. Since the theory is well
defined at the physical dimension �=3, the poles must can-
cel, which requires that

R� = R�. �4.29�

Using

�±��−3� = e±��−3�ln �, �4.30�

we now have, in the neighborhood of �=3,

F��;�� =
R�

� − 3
�e+��−3�ln � − e−��−3�ln �� + r� + r�

= 2R� ln � + �r� + r�� . �4.31�

We must emphasize that this method of dimensional continu-
ation provides not only the coefficient 2R out in front of ln �
�which is often not too difficult to compute�, but the constant
r�+r� in addition to this logarithm �which is often difficult
to compute�.

� ν•
3

F
<(ν; ǫ)

ǫ
−(3−ν)

⇓

ǫ
−|ν−3|

LO: large when ǫ ≪ 1

F
<(ν; ǫ)

ǫ
−(3−ν) = ǫ

+(ν−3)

⇓

ǫ
+|ν−3|

NLO: small when ǫ ≪ 1

� �
�

analytically continue
around the ν =3 pole

FIG. 4. The analytic continuation of F��� ;�� from ��3 to the
region ��3: the same expression can be used for F��� ;�� through-
out the complex plane since the pole at �=3 can easily be avoided.
Note that the quantity F��� ;������−3� is leading order in � for �
�3. However, upon analytically continuing to ��3 we find that
F��� ;������−3� which is next-to-leading order in � relative to
F��� ;����−��−3�.
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A relevant example is provided by the simple model of
the energy loss presented in the previous subsection. Accord-
ing to our general method, in the neighborhood of �=3 we
must have

I��� = I���� + I���� =
bmin

3−�

� − 3
+

bmax
3−�

3 − �
. �4.32�

The �→3 limit produces

I��� =
bmax

3−�

� − 3
� bmin

bmax
�3−�

− 1� → − ln� bmin

bmax
� . �4.33�

This is precisely the value �4.1� of the familiar impact inte-
gral evaluated directly in three dimensions.

Another instructive example of this method is provided by
an examination of the modified Bessel function K��z� for
small � and small z. This is discussed in Refs. �3,1�, and in
more detail in Ref. �2�. These works should be consulted if
the explanation already given is not convincing.

Although we have sketched the basic idea of our dimen-
sional continuation scheme leading to the result �4.31�, in
this paper we shall apply it in a slightly different form, a
form similar to the more physical example that led to the
result �4.33�. As we have explained, the electrostatic poten-
tial in � spatial dimensions has the functional form e /r�−2 so
that the energy between two point charges a distance r apart
is proportional to e2 /r�−2. As we shall see explicitly in our
work below, the electron-ion energy exchange rate contains
an overall dimension-bearing factor �ee

2. This factor has the
dimensions of length to the power �−2. To define a quantity
whose physical dimension does not vary as the spatial di-
mension varies, the factor �ee

2 must be accompanied by a
factor of length raised to the power 3−�, which gives a result
that has a constant factor of 1/length in all spatial dimensions
�. For the ��3 contribution, a scattering term with a length
cutoff given by the electron thermal wavelength �e, the
needed dimensional factor is given by �e

3−� as we shall ex-
plicitly find below. For the ��3 contribution, a long-
distance Debye screened interaction term, the needed dimen-
sional factor is given by �1 /	e�3−� as we shall also explicitly
see below. Thus in all spatial dimensions near �=3, the rate
has the structure

G��� = �ee
2�e

3−�B���� + � 1

	e
�3−�

B����� , �4.34�

and for � near �=3,

B���� =
R

� − 3
+ b� �4.35�

and

B���� =
R

3 − �
+ b�. �4.36�

Writing B=b�+b�, we find that for � near �=3,

G��� = �ee
2�e

3−� R

� − 3
	1 − ��e	e��−3
 + B�

→ �ee
2�− R ln	�e	e
 + B� , �4.37�

in which the final line gives the �=3 limit.
An objection could be raised that we have not shown

explicitly that larger subleading terms are not present. We
have extracted terms that have the generic behavior �3−� for
��3 and ��−3 for ��3. One might ask if there are additional
terms with a power law dependence between �3−� and ��−3.
However, simple dimensional analysis shows that such terms
of intermediate order cannot appear. The point is that the
physics involves only two different mechanisms that domi-
nate at large and small scales. These two different mecha-
nisms involve different combinations of basic physical pa-
rameters and hence give quite different dependencies on the
small parameter when the spatial dimension � departs form
�=3.

V. CONVERGENT KINETIC EQUATIONS

A number of authors �10–13� have proposed various ver-
sions of plasma kinetic equations that have neither short nor
long range divergences. This work is summarized in the
book of Liboff �14�, which we shall outline here and then
relate to our method of dimensional regularization.

Liboff, in his Eq. �2.75�, writes the transport equation for
a homogeneous system such as we consider as

�f

�t
= B0 + L0 − R̄ , �5.1�

where B0 is the Boltzmann collision integral, L0 is the

Lenard-Balescu integral, and R̄ is a renormalization term that
cancels the singularities in B0 and L0 �15�. We should note
that starting off with admittedly infinite and therefore unde-
fined quantities, as in Ref. �14�, is at best a heuristic proce-
dure. This is to be contrasted with the renormalization pro-
cedure performed in modern quantum field theories where
the starting point is a rigorously defined, finite theory be-
cause the starting point is a regularized theory. At any rate,

the infinite renormalization term R̄ is expressed formally as a
double integral over both impact parameters and Fourier
wave numbers. The integral over impact parameters b is bro-
ken up into a large impact parameter part b�b0 and a small

impact parameter part b�b0, R̄= R̄��b0�+ R̄0��b0�. It is

then shown that R̄ has a formal construction such that both

B0− R̄��b0� and L0− R̄��b0� are finite.
The transport equation is thus rendered finite. Liboff con-

cludes, “So we find that the combination of collision inte-
grals gives a reasonable model for a convergent plasma ki-
netic equation.” Our goal, however, is not just to find a
“reasonable model,” but to calculate the Coulomb logarithm
in a precise and rigorous fashion. To leading order in the
plasma density, we shall not only compute the coefficient out
in front of the logarithm, but also the constants that appear in
addition to the logarithm. See Ref. �2� for more details.

Although Gould and DeWitt �12� also separate the right-
hand side of the transport equation into three terms, they do
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so in such a fashion that each of the terms is finite and well
defined. As shown in Appendix B of BPS �1�, the formula-
tion of Gould and DeWitt correctly gives the constant term
as well as the leading Coulomb logarithm, and as far as these
terms are concerned, their work is mathematically equivalent
to our method of dimensional continuation. Both are accurate
to O�g2� in the plasma coupling, and no better. The trouble
with their formulation is that it also produces a subset of
higher order terms, and there is no reason that these provide
a more accurate evaluation. As is well known, the inclusion
of partial subsets of higher-order terms can sometimes give
less rather than more accurate results.

VI. ENERGY AND TEMPERATURE RATES

The rate of change in the electron energy density trans-
ported to all the ions species vanishes when the two sub-
systems have the same temperature. Hence we may write

dEeI

dt
= − CeI�Te − TI� . �6.1�

Since energy flows from the electrons to the ions when the
electrons are hotter than the ions, CeI is positive. Since the
total energy is conserved, the rate at which energy is trans-
ferred from the ions to the electrons, dEIe /dt, has the same
coefficient CeI but an overall sign change or, equivalently,

dEIe

dt
= − CeI�TI − Te� . �6.2�

A change in the energy of a subsystem in the plasma
produces a corresponding change in the temperature of that
subsystem. Thus for the electrons,

�EeI = ce�Te, �6.3�

while for the ions

�EIe = �
i

�Ei = cI�TI. �6.4�

Here, since the plasma interactions do not change particle
number densities, the specific heats ce and cI are those at
constant volume. Since �EeI is an energy density, these are
the specific heats per unit volume. For a hot plasma that is
not strongly coupled, the case treated in this paper, these
specific heats are given by the familiar ideal gas results:

ce = 3ne/2 and cI = 3nI/2, �6.5�

where nI is the total ionic density, the number of all the ions
per unit volume. Thus Eqs. �6.1� and �6.2� are equivalent to

dTe

dt
= − 
eI�Te − TI� , �6.6�

with 
eI=CeI /ce, and

dTI

dt
= − 
Ie�TI − Te� , �6.7�

with 
Ie=CeI /cI. Moreover, the rate at which the separate
temperatures approach one another is given by

d�Te − TI�
dt

= − ��Te − TI� , �6.8�

in which

� = CeI� 1

ce
+

1

cI
� . �6.9�

We turn now to compute the rate coefficient CeI.

VII. BOLTZMANN EQUATION: SHORT-DISTANCE
PHYSICS

We first work in ��3 dimensions where the short-
distance physics dominates. Thus the rate of change of the
electron distribution is described by the Boltzmann equation
with Fermi-Dirac statistics for the electrons and Maxwell-
Boltzmann statistics for the heavy ions. The Boltzmann
equation for the electron distribution, including the Pauli
blocking of the scattered electrons and two-body quantum
scattering effects, reads

�fe�pe�
�t

= �
i
� d�pe�

�2����

d�pi�

�2����

d�pi

�2���� �T�2�2����

���pe� + pi� − pe − pi��2����� pe�
2

2me
+

pi�
2

2mi

−
pe

2

2me
−

pi
2

2mi
�	fe�pe��f i�pi���1 − fe�pe��

− fe�pe�f i�pi��1 − fe�pe���
 , �7.1�

where T is the amplitude for the two-body scattering colli-
sion ei→e�i�, and we have omitted the spatial convection
term on the left-hand side because we are concerned with
spatially uniform plasmas. Since the electrons are in thermal
equilibrium with each other, there is no electron-electron in-
teraction contribution to this time derivative. The electron
kinetic energy density—the electron energy per unit
volume—has the same form as the number density �3.5� save
that an additional factor of Ee�p�= p2 /2me appears in the
integrand. Hence the rate at which this energy density
changes because of the electron ion interactions is given by

�EeI

�t
= 2� d�pe

�2����

pe
2

2me

�fe�pe�
�t

, �7.2�

where the factor of 2 multiplying the integral accounts for
the electron spin degeneracy. Using the crossing symmetry
pe↔pe� and pi↔pi� of the scattering amplitude T in Eq.
�7.1�, the rate of energy exchange from the electrons to the
ions �7.2� can be written as

�EeI
�

�t
= 2�

i
� d�pe�

�2����

d�pi�

�2����

d�pe

�2����

d�pi

�2���� �T�2

�2�������pe� + pi� − pe − pi��2�����pe�
2 − pe

2

2me

+
pi�

2 − pi
2

2mi
�pe�

2 − pe
2

2me
fe�pe�f i�pi��1 − fe�pe��� , �7.3�
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where the factor of 2 in front of the sum is the spin degen-
eracy ge=2 for electrons. We have placed a “greater than”
superscript on the left-hand side of the equation since we are
now computing the ��3 contribution. We start by perform-
ing the pi� integration in Eq. �7.3�, using the momentum con-
serving delta function to set

pi� = pe + pi − pe�. �7.4�

Defining the momentum transfer by

q � pe� − pe = pi − pi�, �7.5�

and the average of the initial and final electron momenta by

p̄ �
1

2
�pe� + pe� , �7.6�

we can simplify Eq. �7.3� to read

�EeI
�

�t
= 2�

i
� d�pe�

�2����

d�pe

�2����

d�pi

�2���� �T�2�2����� 1

mi
pi · q

−
1

me
p̄ · q −

1

2mi
q2� 1

me
p̄ · qfe�pe�f i�pi��1 − fe�pe��� .

�7.7�

Since T is a two-body scattering amplitude, its general form
can depend upon both the square of the momentum transfer
q2=q ·q and the total center-of-mass energy W= p2 /2mei,
where the relative momentum is given by p=me�ve−vi�, with
mei being the reduced electron-ion mass. It is the W depen-
dence in T=T�W ,q2� that renders the integrals in Eq. �7.7�
difficult to calculate because W depends explicitly on pi. In
Sec. 12 of Ref. �1�, this calculation is performed to all orders
in the Coulomb scattering. For the work here, we shall be
less general and exploit the fact that the electron-ion mass
ratio me /mi is very small �so the reduced mass mei is almost
equal to the electron mass me�. We shall assume that the
electron and ion temperatures are not orders of magnitude
apart, a mild restriction in all practical applications, so that

�eme � �Imi. �7.8�

Under these circumstances, the thermal average electron ve-
locity is much larger than the ion velocity, and to a very good
approximation �ve−vi�= �ve�. Thus the quantum Coulomb pa-
rameter �e=eei /4���ve−vi� that appears in the Boltzmann
equation can be replaced by a Coulomb parameter that con-
tains only the electron velocity, �e→Zie

2 /4���ve�, where we
have written ei=Zie. The size of this parameter is estimated
by its thermal average, which we denote by an overline. We
use the simple Maxwell-Boltzmann distribution to estimate
this average. For this classical distribution, the thermal aver-
age of 1 /ve

2 is precisely me /Te, and so

�ei
2 � Zi

2� e2

4��
�2me

Te
= Zi

22��e
2, �7.9�

where in the second equality we have used the previous defi-
nition �4.4� of the electron quantum Coulomb parameter �e
together with the definition �3.7� of the electron thermal
wavelength �e. Another way to write this is

�ei
2 � Zi

22�H

Te
, �7.10�

where �H�13.6 eV previously noted in Eq. �2.9� is the bind-
ing energy of the hydrogen atom. The result �7.10� demon-
strates that �ei is quite small for the elevated temperature
range that concerns us. Hence the scattering amplitude in Eq.
�7.7� can be calculated in the Born approximation �16�,

T � TB�q2� = �
eei

q2 , �7.11�

a quantity that depends only upon the square of the momen-
tum transfer q2, and not on the center-of-mass energy W.

In the Born approximation, the initial ion momentum pi
appears only in the delta function and phase-space density
explicitly shown in Eq. �7.7�, and not in the amplitude
TB�q2�, and so the integration over this momentum variable
can be carried out. If it were not for the delta-function factor,
the pi integration would simply entail

� d�pi

�2���� f i�pi� =� d�pi

�2���� exp�− �I pi
2

2mi
− �i��

= �i
−�e�I�i = ni/gi. �7.12�

Following the convention exhibited in Eq. �3.5�, the species
index i for ions implicitly includes spin degrees of freedom,
and so the integration over a single f i�pi� produces ni /gi. The
delta function in Eq. �7.7� removes one of the components of
the pi integration, which is equivalent to supplying an extra
factor of �i and retaining a Maxwell-Boltzmann factor cor-
responding to the component of the momentum pi along the
direction of q. Hence

� d�pi

�2���� f i�pi��2�����pi · q

mi
−

p̄ · q

me
−

q2

2mi
�

=
1

q

ni

gi
�imi exp�−

�I

2miq
2�mi

me
p̄ · q +

q2

2
�2� .

�7.13�

We shall often denote the magnitude of the momentum trans-
fer by q= �q�, as we have done here. We now change the
remaining two integration variables pe� and pe in Eq. �7.7� to
the variables p̄ and q defined in Eqs. �7.5� and �7.6�, a
change that has a unit Jacobian. Since the electrons are de-
scribed by the Fermi-Dirac distribution �3.2�, the Pauli
blocking term in Eq. �7.7� can be written as

1 − fe�p̄ + q/2� = e−�e�e exp� �e

2me
�p̄ +

1

2
q�2� fe�p̄ + q/2� .

�7.14�

Using these results, and neglecting terms involving the very
small ratios me /mi and �eme /�Imi, we find that
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�EeI
�

�t
= 2�

i

ni

gi
� d�p̄

�2����

d�q

�2���� �TB�q2��2
mi�i

me
e−�e�e

fe�p̄ − q/2�fe�p̄ + q/2�exp�+
�e

2me
p̄�

2 +
1

4
q2��

p̄ · q̂ exp�−
�I

2me

mi

me
p̄ · q̂ +

me

2mi
�1 −

�e

�I
�q�2� ,

�7.15�

where q̂=q / �q�, the variable p̄� in the first exponent is the
component of p̄ orthogonal to the momentum transfer q, so
that p̄= p̄�+ �p̄ · q̂�q̂ with p̄� ·q=0.

We can simplify the rate �7.15� by further exploiting the
consequences of the very small ratio me /mi. In the order of
magnitude estimates that follow, we will use the symbol � to
designate the inverse temperatures of either the electrons or
the ions. This is possible because the temperature disparity is
not very severe. We now see that the thermal distribution
functions in the second line of Eq. �7.15� restrict the size of
the momenta to be of the order

p̄�
2 �

me

�
and q2 �

me

�
. �7.16�

For the longitudinal component of the electron momentum,
the form of the exponential in the last line of Eq. �7.15�
motivates the change of variables to

p̄�� � p̄ · q̂ +
me

2mi
�1 −

�e

�I
�q . �7.17�

Under this change of variables, the last line in Eq. �7.15�
becomes

p̄�� −
me

2mi
�1 −

�e

�I
�q�exp�−

�I

2me

mi

me
p̄��

2� , �7.18�

a term whose exponent restricts the size of the longitudinal
component to be

�p̄��� �� me
2

�mi
��me

mi
p̄� ��me

mi
q . �7.19�

This means that the second term in square brackets at the
start of expression �7.18�, the term �me /mi�q��me

3 /�mi
2, is a

factor �me /mi smaller than the first term p̄��. However, as we
shall find, the first term integrates identically to zero, leaving
the ostensibly smaller second term as the leading order con-
tribution. To see this, we first note that the electron distribu-
tions fe�p̄�q /2� in Eq. �7.15� are functions of the dimen-
sionless variables

�eEe�p̄ � q/2� =
�e

2me
�p̄ � q/2�2. �7.20�

Here, we must express the old variable p̄ in terms of the new
variable

p̄� � p̄� + p̄��q̂ , �7.21�

or in terms of the vectors �7.5� and �7.6�,

p̄� = p̄ +
me

2mi
�1 −

�e

�i
�q . �7.22�

Then from Eq. �7.22�, we see that replacing the old variable
p̄ in Eq. �7.20� by the new variable p̄� incurs relative error of
order

�me/mi�p̄� · q�1/p̄2� � �me/mi�3/2, �7.23�

an error beyond the leading term that we retain. That is to
say, we can simply replace

fe�p̄ − q/2�fe�p̄ + q/2� → fe�p̄� − q/2�fe�p̄� + q/2� .

�7.24�

This product is explicitly even in q, as are the remaining
terms in the integrand, and consequently, the odd term p̄�� in
the prefactor of Eq. �7.18� integrates to zero. The energy rate
�7.15� now reduces to

�EeI
�

�t
= − 2�

i

ni

gi
� d�p̄�

�2����

d�q

�2���� �TB�q2��2
mi�i

me
e−�e�e

fe�p̄� − q/2�fe�p̄� + q/2�exp�+
�e

2me
p̄�

2 +
1

4
q2��


me

2mi
�1 −

�e

�I
�q exp�−

�I

2me

mi

me
p̄��

2� . �7.25�

The integral over the momentum p̄�= p̄�+ p̄��q̂ contains �
−1 integrals from p̄� and one integral from p̄��.

Now that the leading contribution has be extracted, we
can make further reductions by omitting several more terms
in me /mi. In particular, we may now neglect the longitudinal
part p̄��= p̄� · q̂ relative to q= �q� in the electron distribution
functions fe�p̄��q�, which then become functions only of
�p̄��q /2�2. In fact, since p̄� ·q=0, both electron distribu-
tion functions have the same argument,

�eEe�p̄� ± q/2� =
�e

2me
�p̄�

2 +
1

4
q2� , �7.26�

and their product becomes a simple square: fe�p̄�
−q /2�fe�p̄�+q /2�= �fe�p̄�+q /2��2. The longitudinal compo-
nent p̄�� now appears only in the final factor of the integrand
in Eq. �7.25�, and we may therefore explicitly perform the
integration over this part of the momentum,

�
−�

� dp̄��

2��
exp�−

�I

2mi
�mi

me
�2

p̄��
2� =

me

mi�i
, �7.27�

where the ionic thermal wavelength �i is determined from
Eq. �3.7�. We can now express the rate �7.25� as
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�EeI
�

�t
= − me�1 −

�e

�I
��

i

ni

gimi

� d�−1p̄�

�2����−1

d�q

�2���� �TB�q2��2qe−�e�e

�fe�p̄� + q/2��2 exp�+
�e

2me
p̄�

2 +
1

4
q2�� .

�7.28�

The integration over the momentum transfer q is damped at
large values of q= �q�, because at such large values

q → �:e−�e�e�fe�p̄� + q/2��2 exp�+
�e

2me
p̄�

2 +
1

4
q2��

→ e+�e�e exp�−
�e

2me
p̄�

2 +
1

4
q2�� . �7.29�

Since the limit �7.29� constrains the integrand to small q, this
further supports the use of the Born approximation �7.11�,
which allows us to express the rate �7.28� as

�EeI
�

�t
= − �ee

2me�
2�I

2�Te − TI� � d�−1p̄�

�2����−1


d�q

�2����

1

q3e−�e�e�fe�p̄� + q/2��2

exp�+
�e

2me
p̄�

2 +
1

4
q2�� , �7.30�

where �I
2 is the sum over all the ionic species of the squared

plasma frequencies,

�I
2 = �

ion species
�i

2 = �
i

ei
2ni

mi
. �7.31�

Now that the clutter has abated, we can more easily study
the nature of the parameters that enter into the ��3 contri-
bution of the energy exchange rate. Dividing the time deriva-
tive of the electron energy density by the electron specific
heat 3ne /2 gives the rate of the electron temperature change
already noted in Eq. �6.7�, namely,

�Te

�t
= − 
eI�Te − TI� . �7.32�

The integral of each momentum, with the normalizing de-
nominator 2��, gives a pure number times a factor of 1 /�e.
Since ne��e

−�, and each factor of the momentum transfer �q�
will produce a factor of � /�e, we conclude from Eq. �7.30�
that


eI � �ee
2me�

2�I
2�e

1−���e/��3 � � e2

�e
�−2

1

Te
����I

Te
��I,

�7.33�

where in the second line we have made use of

�e
2 � �2�e/me and �e = 1/Te. �7.34�

In a �-dimensional space, the energy between two electrons a
distance �e apart is, up to a constant, given by e2 /�e

�−2.
Hence the first factor in parentheses in the last line above is
dimensionless. Since ��I is an energy, the second factor is
also dimensionless. Thus the overall dimension of 
eI is that
of the final factor �I, the correct dimension of an inverse
time or rate. Although a factor of � appears here, it is can-
celed by the single factor of � that appears in 1 /�e

�−2 in the
�→3 limit, and so in this limit the rate is a classical quantity.
However, as we shall see, the dimensional continuation
method that we use produces logarithms, and a logarithm of
� will appear in the final result. Finally, we should note that
the rate involves the first power of the ion density, a power
that does not depend upon the spatial dimensionality �.

The rate �7.30� for ��3 diverges when �→3+, a diver-
gence that is canceled by the �→3− limit of the rate for �
�3 that we compute in the next section. This latter rate
involves purely classical dynamics. Thus it entails a wave
number k that comes from the Fourier transform of a poten-
tial which is the analog of the quantum momentum transfer
q, but with q=�k. With this replacement, the electron distri-
butions would become fe�p̄�+�k /2�, but since only classical
quantities appear in the forthcoming ��3 contribution, in
this part the electron distributions must appear only as fe�p̄��.
Thus to separate out a part of the ��3 Boltzmann expres-
sion for the rate that will combine in a simple fashion with
the ��3 contribution that we shall soon examine, we con-
struct this part by making the replacement

�fe�p̄� + q/2��2 exp�+
�e

8me
q2�→ �fe�p̄���2 exp�−

�e

8me
q2� ,

�7.35�

which exhibits the needed large q2 damping given in the
limit �7.29�. Accordingly, we decompose the rate of energy
transfer into a potentially singular part and a regular part,

�EeI
�

�t
=

�EeI
�S

�t
+

�EeI
�R

�t
, �7.36�

where

�EeI
�S

�t
= − �ee

2me�
2�I

2�Te − TI� � d�−1p̄�

�2����−1

d�q

�2����

1

q3

exp�−
�e

8me
q2�e−�e�e�fe�p̄���2 exp�+

�e

2me
p̄�

2 � ,

�7.37�

and

�EeI
�R

�t
= − �ee

2me�
2�I

2�Te − TI� � d2p̄�

�2���2

d3q

�2���3

1

q3e−�e�e

��fe�p̄� + q/2��2 exp�+
�e

2me
�p̄�

2 +
1

4
q2��

− �fe�p̄���2 exp�+
�e

2me
�p̄�

2 −
1

4
q2��� . �7.38�
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Here in the regular part, we have taken the �→3 limit since
there is no impediment in doing so.

The singular part �7.37� may be simplified by performing
the q integration. Passing to hyperspherical coordinates gives

� d�q

�2����

1

q3 exp�−
�e

8me
q2�

=
��−1

�2�����
0

� dq

q
q�−3exp�−

�e

8me
q2�

=
��−1

�2����

1

2
�

0

� dx

x
�8me

�e
x���−3�/2

e−x

=
��−1

�2���3

1

2
���e

2

4
��3−��/2

��� − 3

2
� , �7.39�

where ��−1 is the area of a unit ��−1� sphere embedded in a
�-dimensional space. In the second line above we have made
an obvious change to a dimensionless integration variable x,
and in the last line we have identified the resulting integral
with a standard representation of the gamma function. We
thus have

�EeI
�S

�t
= −

�ee
2me

2�
�I

2 ��−1

�2��3���e
2

4
��3−��/2

��� − 3

2
��Te − TI�

� d�−1p̄�

�2����−1 �fe�p̄���2 exp��e p̄�
2

2me
− �e�� .

�7.40�

As we shall see, the ��3 contribution calculated in the next
section contains the same integral over the transverse com-
ponents p̄�, so it will be convenient to perform this integral
when we add these terms together.

The regular part of the energy exchange rate may also be
simplified since the integral over the electron distribution
functions can be performed when �=3. Namely, we pass to
polar coordinates, with the angular integration simply pro-
ducing a factor of 2�, to obtain

� d2p̄�

�2���2 �fe�p̄���2 exp��e p̄�
2

2me
− �e��

=
me

2��e�
2�

0

�

d��ep
2

2me
� exp�+ �e p2

2me
− �e��

exp�+ �e p2

2me
− �e�� + 1�2

=
1

�e
2

1

exp	− �e�e
 + 1
. �7.41�

Hence making the replacement

− �e�e → �e q2

8me
− �e� �7.42�

for the first term, we have

�EeI
�R

�t
= −

�ee
2me

2�

�I
2

�2

1

�e
2 �Te − TI�

�
0

� dq

q
� 1

exp	�e��q2/8me� − �e�
 + 1

−
exp	− �e�q2/8me�

exp	− �e�e
 + 1

�
= −

�ee
2me

2�

�I
2

�2

1

�e
2 �Te − TI�

1

2
�

0

�

dx

ln x� exp	x − �e�e

�exp	x − �e�e
 + 1�2

−
exp	− x


exp	− �e�e
 + 1
� , �7.43�

where the last line follows from a trivial change of integra-
tion variables and a partial integration.

VIII. LENARD-BALESCU EQUATION: LONG-DISTANCE
PHYSICS

We turn now to calculate the leading order long-distance
physics by working in spatial dimensions ��3. This is done
by employing the Lenard-Balescu equation with Fermi-Dirac
statistics for the electrons and Maxwell-Boltzmann statistics
for the heavy ions. For the spatially homogeneous system
that we work with, the Lenard-Balescu equation with the
appropriate Pauli blocking reads

�fe�pe�
�t

= −
�

�pe
· �

i
� d�pi

�2����

d�k

�2���k� eei

k2��k,k · vi�
�2

���k · ve − k · vi��k ·
�f i�pi�

�pi
fe�pe�

�1 − fe�pe�� − f i�pi�k ·
�fe�pe�

�pe
� , �8.1�

where the gradient � /�pe acts on everything to its right, and
��k ,�� is the classical dielectric function for the plasma dis-
cussed in Appendix A. As was shown in Appendix C of Ref.
�1�, the usual nondegenerate Lenard-Balescu equation is a
formal limit of the Boltzmann equation. The same methods
that were employed there may be used to show that Eq. �8.1�
is the corresponding long-distance equation when the elec-
trons are degenerate and described by Fermi-Dirac statistics.
If the electrons and ions are in equilibrium with themselves
at temperatures Te and Ti, respectively, then their distribution
functions fe and f i are given by Eqs. �3.2� and �3.1�, in which
case the terms in curly braces can be written as

��ek · ve − �ik · vi�f i�pi��fe�pe��2 exp��e pe
2

2me
− �e�� .

�8.2�

Because the delta function equates k ·ve with k ·vi, the factor
�8.2� and with it the right-hand side of Eq. �8.1� vanish when
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the electrons and ions are in thermal equilibrium with a com-
mon temperature T, the electrons being described by a
Fermi-Dirac distribution and the ions by a Maxwell-
Boltzmann distribution. This confirms the validity of Eq.
�8.1�, the Lenard Balescu equation with Pauli blocking for
degenerate electrons.

Using Eq. �8.2� with the ions at the same inverse tempera-
ture �I=1 /TI, and upon integrating the total derivative � /�pe
by parts, we can express the energy exchange rate as

�EeI
�

�t
= 2�

i
� d�pe

�2����

d�pi

�2����

d�k

�2���k · ve� eei

k2��k,k · vi�
�2

���k · ve − k · vi���ek · ve − �Ik · vi�

f i�pi��fe�pe��2 exp��e pe
2

2me
− �e�� . �8.3�

We have placed a “less than” superscript on the left-hand
side of Eq. �8.3� to remind ourselves that the calculation is
performed in ��3 using the Lenard-Balescu equation. The
distribution functions constrain the velocities of the ions and
the electrons to be of the order vi��TI /mi and ve

��Te /me, respectively. Since an ion mass is so much greater
than that of an electron, and the temperature disparity is
never excessively large for cases of interest, the ions move
much slower than the electrons,

vi � ve. �8.4�

This restriction also follows from the previous condition
�7.8�, the condition that �eme��Imi. To compute the rate
�8.3�, we first decompose the electron momentum into per-
pendicular and longitudinal components relative to the direc-

tion specified by k̂, so that pe=p�+ p�k̂ with k̂ ·p�=0 and

p� = k̂ ·pe=mek̂ ·ve. The delta function in Eq. �8.3� can be
used to remove the parallel component p� of the electron
momenta integration. Since dp� / �2���= �me /2��k�d�k ·ve�,
the use of this delta function produces a factor �me /2��k�
and makes the replacement p�→mek̂ ·vi. In view of the limit
�8.4�, this replacement makes p� much smaller than the mag-
nitude of the perpendicular components of the electron mo-
menta p�. Hence we can simply replace p→p� in the re-
mainder of the integrand. We shall also find it convenient
�the heart hath its reasons�, to insert a factor of unity in the
form

1 = �
−�

+�

dv��v − k̂ · vi� , �8.5�

which allows us to express Eq. �8.3� as

�EeI
�

�t
= − 2�e

e2me

2��
�Te − TI�

� d�−1p�

�2����−1 �fe�p���2 exp��e p�
2

2me
− �e��

� d�k

�2���k�
−�

+�

dv
�v2

�k2��k,vk��2�i

�Iei
2

� d�pi

�2���� f i�pi���k̂ · vi − v� . �8.6�

This integral can be further simplified by taking advantage of
the analytic properties of the dielectric function ��k ,��, dis-
cussed in some detail in Appendix A. Repeating Eq. �A16�
here for convenience, we see that a considerable portion of
the integral simplifies because

�v
�k2��k,vk��2�i

�Iei
2� d�pi

�2���� f i�pi���k̂ · vi − v�

= −
1

2i� 1

k2 + 	e
2 + FI�v�

−
1

k2 + 	e
2 + FI�− v�� . �8.7�

This result is the �unemotional� reason that the factor of
unity in the form displayed in Eq. �8.5� was inserted in the
integrand. Here 	e is the electronic contribution to the Debye
wave number, including the effects of Fermi-Dirac statistics,
as expressed by Eq. �A6�, while FI is a complex-valued func-
tion defined by Eq. �A9�. It is important to realize that the
simplification �8.7� only occurs when the ion species are
summed over. The function FI�z� is analytic over the upper
half of the complex z plane, and has the asymptotic behavior

�z� → �: FI�z� → −
�I

2

z2 , �8.8�

where �I is the total ionic plasma frequency defined above in
Eq. �7.31�. Since an explicit odd factor of v appears in the
integrand, we can write the resulting integral over v in Eqs.
�8.6� in the form

− �
−�

+�

dv
v
2i� 1

k2 + 	e
2 + FI�v�

−
1

k2 + 	e
2 + FI�− v��

= lim
V→�

i�
−V

+V

dv
v

k2 + 	e
2 + FI�v�

. �8.9�

The delta function in Eq. �8.7� removes the longitudinal
components of the ionic momenta, leaving a Maxwell-
Boltzmann factor involving the velocity v. Hence the left-
hand side of the integrand in Eq. �8.9� is damped in a Gauss-
ian fashion for large �v�. This rapid damping results from a
cancellation between the terms with FI�v� and FI�−v� that
only happens when the two velocities are exactly the nega-
tive of one another. Hence when we simplify the integrand
by taking advantage of the odd prefactor as was done on the
right-hand side of Eq. �8.9�, we must integrate between the
exact same negative and positive limits, between −V and +V,
and only afterward take the limit V→�. Since FI�z� is ana-
lytic in the upper-half z plane, the integral �8.9� may be
evaluated by contour integral techniques. Let CV be a semi-
circle of radius V centered at the origin of the complex z
plane, with an orientation that starts at +V and ends at −V.
We can traverse a closed circuit by moving from −V to +V
along the real axis, with the circuit completed back to −V by
traversing CV. The contour integral around this closed circuit
vanishes since it contains no interior singularities,
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0 = � dz
z

k2 + 	e
2 + FI�z�

= �
−V

V

dv
v

k2 + 	e
2 + FI�v�

+ �
CV

dz
z

k2 + 	e
2 + FI�z�

.

�8.10�

Hence the integral �8.9� is equal to the negative of the inte-
gral over the semicircle CV starting at +V and ending at −V.
We can now take the limit V→� and use the asymptotic
form �8.8� for FI along CV. Since

�
CV

dzz = iV2�
0

�

d�e2i� = 0, �8.11�

the leading term of the expansion of the denominator in Eq.
�8.9� yields a vanishing contribution, and the only nonvan-
ishing term is given by first-order term with FI�z� replaced
with its asymptotic form �8.8�:

lim
V→�

i�
−V

+V

dv
v

k2 + 	e
2 + FI�v�

= i
1

�k2 + 	e
2�2

 lim
V→�

�
CV

dzz−
�I

2

z2 �
=

�

�k2 + 	e
2�2�I

2. �8.12�

Upon passing to hyperspherical coordinates to perform the k
integration, we now arrive at

�EeI
�

�t
= −

�ee
2me

�
�Te − TI� � d�−1p�

�2����−1 �fe�p���2

exp��e p�
2

2me
− �e���I

2 ��−1

�2���

�
0

�

k�−1dkk
1

�k2 + 	e
2�2 . �8.13�

Changing variables by k= t1/2	e places the k integration in
the form of a standard representation of the Euler beta func-
tion �17�, and so we have

�
0

�

dk
k�

�k2 + 	e
2�2 =

1

2
	e

�−3���� + 1�/2����3 − ��/2�
��2�

.

�8.14�

Finally, we are now able to express the ��3 form of the
electron-ion energy exchange as

�EeI
�

�t
= −

�ee
2me

2�
�I

2 ��−1

�2��3� 	e

2�
��−3

��� + 1

2
���3 − �

2
�

�Te − TI� � d�−1p�

�2����−1 �fe�p���2

exp��e p�
2

2me
− �e�� . �8.15�

IX. ADDING THE RATES

The sum of the singular part �7.40� for the ��3 contri-
bution to the electron-ion energy exchange rate and the �
�3 part �8.15� that we have just computed is

�EeI
�S

�t
+

�EeI
�

�t
= −

�ee
2me

2�
�I

2 ��−1

�2��3 �Te − TI�

� d�−1p�

�2����−1 �fe�p���2 exp��e p�
2

2me
− �e��

���e
2

4
��3−��/2���� − 3

2
�

+ �	e
2�e

2

16�
���−3�/2

��� + 1

2
���3 − �

2
�� . �9.1�

As must be the case, the expression in the final curly braces
above is finite in the �→3 limit. To extract this limit, we use

� → 3: ��� − 3

2
� →

2

� − 3
− 
 ,

��3 − �

2
� →

2

3 − �
− 
 ,

��� + 1

2
� → 1 − �1 − 
�

3 − �

2
�9.2�

to evaluate the �→3 limit of the last line in Eq. �9.1�:

 2

� − 3
− 
� + �	e

2�e
2

16�
���−3�/2 2

3 − �
− 1�

→ ln� 16�

	e
2�e

2� − 
 − 1. �9.3�

Since this last factor is finite in the �→3 limit, we may now
take the �→3 limit of all the other quantities in Eq. �9.1�.
The integral over the perpendicular momenta in this limit
was evaluated previously in Eq. �7.41�, and so we now have

�EeI
�S

�t
+

�EeI
�

�t
= −

�ee
2me

2�

�I
2

2�2

1

�e
2

1

exp	− �e�e
 + 1

ln� 16�

	e
2�e

2� − 
 − 1��Te − TI� . �9.4�

To this we must add the remaining finite part �7.43� of the
��3 contribution, namely,

�EeI
�R

�t
= −

�ee
2me

2�

�I
2

2�2

1

�e
2

�Te − TI��
0

�

dx ln x� exp	x − �e�e

�exp	x − �e�e
 + 1�2

−
exp	− x


exp	− �e�e
 + 1
� . �9.5�

Recalling that we have defined �Eq. �6.1��
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dEeI

dt
= − CeI�Te − TI� , �9.6�

we have now calculated the rate coefficient to leading order
in the plasma coupling and to all orders in the electron fugac-
ity ze=e�e�e,

CeI =
�ee

2me

2�

�I
2

�2

1

�e
2� 1

exp	− �e�e
 + 1

1

2ln� 16�

	e
2�e

2� − 
 − 1�
+

1

2
�

0

�

dx ln x exp	x − �e�e

�exp	x − �e�e
 + 1�2

−
exp	− x


exp	− �e�e
 + 1
�� . �9.7�

By expanding the denominators, it is easy to check that

�
0

�

dx ln x exp	x − �e�e

�exp	x − �e�e
 + 1�2 −

exp	− x

exp	− �e�e
 + 1

�
= �

l=1

�

�− 1�l+1 ln	l + 1
e�l+1��e�e, �9.8�

which is an expansion in powers of the electron fugacity ze
=e�e�e.

To place this result in a form that is easily compared to
that of BPS �1�, we use the definition �3.7� of the thermal
wavelength and a slight manipulation to write

CeI =
�I

2

2�
��eme

2�
�2�ee

2

�e
3 e�e�e�

� 1

exp	�e�e
 + 1

1

2ln� 16�

	e
2�e

2� − 
 − 1�
+

1

2�
l=1

�

�− 1�l+1 ln	l + 1
el�e�e� . �9.9�

In the dilute limit in which Maxwell-Boltzmann statistics
apply, the fugacity exp	�e�e
 is very small. The number den-
sity approximation �3.12� gives

2

�e
3e�e�e � ne1 +

1

23/2e�e�e� , �9.10�

and we see that keeping the first correction in the fugacity
yields

CeI �
�I

2

2�
��eme

2�
��ee

2ne��1 − �1 −
1

23/2�e�e�e�


1

2ln� 16�

	e
2�e

2� − 
 − 1� +
1

2
e�e�e ln 2� . �9.11�

Again remembering the fugacity approximation �3.17�,
which we repeat here,

	e
2 � �ee

2ne1 −
1

23/2e�e�e� , �9.12�

and the definitions

�e
2 =

2��2�e

me
and �e

2 =
e2ne

me
, �9.13�

we find that

16�

	e
2�e

2 �
8Te

2

�2�e
21 +

1

23/2e�e�e� , �9.14�

and thus

CeI �
�I

2

2�
��eme

2�
��ee

2ne��1 − �1 −
1

23/2�e�e�e�


1

2
ln� 8Te

2

�2�e
2� − 
 − 1�

+ e�e�e1

2
ln 2 +

1

25/2�� . �9.15�

We may use e�e�e ��e
3ne /2 inside the curly braces of Eq.

�9.15�. It is easy to confirm that with the neglect of the
fugacity corrections, this is in agreement with Eq. �12.12� of
BPS �1� after that equation is corrected as mentioned in the
Introduction.
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APPENDIX A: THE DIELECTRIC FUNCTION

In Sec. VIII, the calculation of the rate in ��3 using the
Lenard-Balescu equation made extensive use of the plasma
dielectric function and its various properties. The classical
dielectric function for a collisionless plasma is discussed in
Ref. �18�, for example, and the form of the result that we
shall use reads

��k,�� = 1 + �
b

eb
2

k2 � d�pb

�2����

1

� − k · vb + i�
k ·

�

�pb
fb�pb� ,

�A1�

with the prescription �→0+ defining the correct retarded re-
sponse. The degenerate electrons are described by the ther-
mal Fermi-Dirac distribution �3.2�, so

k ·
�

�pe
fe�pe� = − �ek · ve

e�e�Ee−�e�

�e�e�Ee−�e� + 1�2

= − �ek · vefe�pe��1 − fe�pe�� . �A2�

On the other hand, the ions are described by the Maxwell-
Boltzmann distribution �3.1�, which is simply the large
chemical potential limit −���1 of the Fermi-Dirac distri-
bution. In this limit the Pauli blocking term is removed, �1
− f�p��→1, and so

k ·
�

�pi
f i�pi� = − �ik · vi f i�pi� . �A3�

For the real plasma considered in the text, the ions equili-
brate to a common temperature TI=1 /�I; however, for the
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purposes of this appendix, we shall take each ion species i to
have an individual inverse temperature �i. For degenerate
electrons and Maxwell-Boltzmann ions, the dielectric func-
tion �A1� may therefore be expressed as

��k,�� = 1 − �
i

�iei
2

k2 � d�pi

�2����

k · vi f i�pi�
� − k · vi + i�

−
�ee

2

k2 · 2� d�pe

�2����

k · vefe�pe�
� − k · ve + i�

�1 − fe�pe�� .

�A4�

The factor of two in the electron contribution arises from a
sum over the two spin components of the electron.

The dielectric function in the Lenard-Balescu equation
has the functional form ��k ,v ·k�, with the speed �v� much
less than the electron thermal velocity. Hence in the electron
contribution to the dielectric function, the magnitude of �
=k ·v is much less than the typical magnitude of k ·ve, and
we can use the �→0 limit in which

−
�ee

2

k2 · 2� d�pe

�2����

k · ve

� − k · ve + i�
fe�pe��1 − fe�pe�� →

	e
2

k2 ,

�A5�

where

	e
2 = 2�ee

2� d�pe

�2���� fe�pe��1 − fe�pe�� �A6�

defines the electron contribution to the squared Debye wave
number, including the effects of Fermi-Dirac statistics which
are explicitly exhibited by the Pauli blocking factor �1
− fe�pe��. From the form �3.2� of the thermal Fermi-Dirac
distribution fe�pe� and the definition �3.5� of the number den-
sity, we see that

	e
2 = e2�e

�ne

���e�e�
. �A7�

Remembering the structure of the grand canonical ensemble,
the derivative that appears here is the thermal average of the
fluctuations about the mean particle number. In the limit of
Maxwell-Boltzmann statistics, the derivative simply repro-
duces the particle number density, corresponding to the fact
that classical statistics have a Poisson distribution. Multiply-
ing Eq. �A5� by k2 and using Eq. �A5� for the electron con-
tribution, we can write

k2��k,�� = k2 + 	e
2 + FI��/k� , �A8�

where we have defined the function

FI�v� = − �
i

�iei
2� d�pi

�2����

k̂ · vi

v − k̂ · vi + i�
f i�pi� . �A9�

This is almost the same function F defined in Ref. �1�, except
that here we have handled the electron contribution sepa-
rately.

Superficially it appears that FI contains wave-vector de-

pendence through the terms k̂ ·vi in the integrand of Eq.

�A9�; however, since we are integrating over all values of vi,

the wave-vector direction k̂ cancels in FI. As our notation
suggests, FI�v� is indeed only a function of v= �v�. Further-
more, because of the i� term with ��0 in the denominator,
the function FI is analytic in the upper complex v plane.

In evaluating the integral �8.12� in the text, we require the
large-v behavior of Eq. �A9�. Since the numerator of the
integrand in Eq. �A9� is odd, we can expand the denominator
to find the leading v behavior,

�v� → �: FI�v� → − �
i

�iei
2� d�pi

�2����

�k̂ · vi�2

v2 f i�pi�

= −
�I

2

v2 + O�v−4� , �A10�

where

�I
2 = �

i

ei
2ni

mi
�A11�

is the sum of the squared ion plasma frequencies. To obtain
this result, the Gaussian integral in Eq. �A10� may be calcu-
lated directly, or more elegantly, one may use Eq. �A3� to

replace �k̂ ·vi�f i with a derivative of f i, after which a partial
integration yields Eq. �A10�.

Finally, we derive a dispersion relation that will be quite
useful in evaluating Eq. �8.6� in Sec. VIII. Applying the re-
lation

Im
1

x + i�
= − ���x� �A12�

for �→0+ in Eq. �A9� allows us to express the imaginary
part of FI in the form

Im FI�v� = �
i

�iei
2� d�pi

�2���� f i�pi�v���v − k̂ · vi� .

�A13�

From this, we can find the imaginary part of the inverse of
the dielectric function:

Im
1

k2��k,v · k�
= −

Im k2��k,v · k�
�k2��k,v · k��2

= −
Im FI�v�

�k2��k,v · k��2

= −
1

�k2��k,v · k��2�i

�iei
2� d�pi

�2����

f i�pi�v���v − k̂ · vi� . �A14�

Since the numerator in the integrand �A9� is odd, under com-
plex conjugation we have

FI�− v� = FI�+ v�*. �A15�

Hence using Eqs. �A8� and �A15� can write

�v
�k2��k,v · k��2�i

�iei
2� d�pi

�2���� f i�pi���k̂ · vi − v� .
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=−
1

2i� 1

k2 + 	e
2 + FI�v�

−
1

k2 + 	e
2 + FI�− v�� . �A16�

APPENDIX B: SCATTERING CORRECTIONS

The electron-ion energy exchange rate computed in Sec.
12 of BPS �1� was performed under quite general conditions,
with no restriction on the masses, number densities, or tem-
peratures of the plasma components, except that the plasma
be fully ionized, nondegenerate, and weakly to moderately
coupled �all mild restrictions in a hot, low-Z plasma�. Be-
cause of its generality, this result, which we shall present
momentarily, is rather complicated. However, for most prac-
tical calculations, we can work in the high-temperature
extreme-quantum limit and take advantage of the small
electron-to-ion mass ratio. Under these conditions, we can
use the Born approximation for the two-body scattering am-
plitude, and the rate coefficient collapses to the simple ex-
pression,

CeI =
�I

2

2�
��eme

2�
��ee

2ne�
1

2
ln� 8Te

2

�2�e
2� − 
 − 1� ,

�B1�

as previously quoted in Eq. �2.3�. The purpose of this appen-
dix is to find the subleading quantum correction to Eq. �B1�.

As noted in BPS, this subleading correction is of order

�ei
2 � 27eV/Te, �B2�

which, for most applications that we have in mind, is quite
small. However, the leading electron degeneracy effects are
of order ze�nea0

3�27 eV /Te�3/2, which can be comparable in
size to the subleading quantum correction. Both corrections
are small compared to the leading-order contribution �B1�.
Therefore in this appendix, we can work in the nondegener-
ate limit, since degeneracy effects on top of the subleading
quantum effects are smaller still. Consequently, our starting
point will be the nondegenerate, but otherwise rather general,
expression for the rate derived in Sec. 12 of BPS. We shall
simplify this rate in favor of the more realistic case of light
electrons and heavy ions, exhibiting this result in Eq. �B24�,
an expression that is valid to all orders in the quantum pa-
rameter �ei. Although this expression is clear and compact,
for the purposes of this paper, however, we only need the
subleading �ei

2 term. This subleading correction is displayed
in Eq. �B33�.

The strength of the quantum effects associated with the
scattering of two plasma species a and b is characterized by
the dimensionless parameter

�̄ab =
eaeb

4��Vab
, �B3�

where the square of the thermal velocity in this expression is
defined by

Vab
2 =

1

�ama
+

1

�bmb
. �B4�

The extreme quantum limit, where formally �→�, is given
by �̄ab→0; while the extreme classical limit, where formally
�→0, is given by �̄ab→�. The former case is equivalent to
the Born approximation. In Sec. 12 of BPS, the energy ex-
change rate from an arbitrary plasma species a to another
species b,

dEab

dt
= − Cab�Ta − Tb� , �B5�

was computed to all orders in the two-body quantum-
scattering parameter �̄ab. It was found that the rate coeffi-
cient can be written as a sum of three terms, which, in the
notation of BPS, reads

Cab = Cab,R
� + �Cab,S

C + Cab
�Q� , �B6�

where the last two terms have been grouped together for later
convenience. These three terms are given by Eqs. �12.31�,
�12.25�, and �12.50�, respectively, in BPS:

Cab,R
� =

	a
2	b

2

2�
��ama

2�
�1/2��bmb

2�
�1/2�

−�

�

dvv2e−�1/2���ama+�bmb�v2


i

2�

F�v�
�total�v�

ln�F�v�
K2 � , �B7�

Cab,S
C = − 	a

2	b
2 ��ama�bmb�1/2

��ama + �bmb�3/2� 1

2�
�3/2

ln� eaeb

4�

K

4mabVab
2 � + 2
� , �B8�

and

Cab
�Q = −

1

2
	a

2	b
2 ��ama�bmb�1/2

��ama + �bmb�3/2� 1

2�
�3/2�

0

�

d�e−�/2

Re ��1 + i
�̄ab

�1/2� − ln� �̄ab

�1/2�� . �B9�

Since we are using Maxwell-Boltzmann statistics throughout
this section, the Debye wave number of any plasma species,
including electrons, is here determined by 	b

2=�beb
2nb. The

complex-valued function F�v� is defined by

F�v� = �
−�

�

du
�total�u�

v − u + i�
, �B10�

where �total�v� is the spectral weight,

�total�v� = �
b

�b�v� , �B11�

with
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�b�v� = 	b
2��bmb

2�
v exp�−

1

2
�bmbv

2� . �B12�

This is similar to the function FI introduced in the previous
appendix, except here the sum extends over all plasma spe-
cies, including electrons. Note the dependence in Eqs. �B7�
and �B8� on an unspecified parameter K, with the only re-
striction being that K has units of a wave number. This is an
artifact of the calculational procedure, and it was shown in
BPS that the total rate Cab is indeed independenet of K, as
this parameter cancels in the sum between Eqs. �B7� and
�B8�. As a matter of technical convenience, we will hence-
forth set K=	e throughout the rest of this appendix �the sim-
plified result �B18� only holds under this condition�. Finally,
we should note that the reduced mass is determined by
1 /mab=1 /ma+1 /mb, and

��z� =
1

��z�
d��z�

dz
�B13�

is the logarithmic derivative of the gamma function.
Specializing to electrons and ions �in which a=e and b

= i�, we can employ Eq. �B12� to write Eq. �B7� in the form

CeI,R
� � �

i

Cei,R
�

=
	e

2

2�
��eme

2�
�1/2�

−�

�

dvve−�1/2��emev2 i

2�


1

�total�v��i

�i�v�F�v�ln�F�v�
	e

2 � . �B14�

This expression greatly simplifies since the electron is so
much lighter than the ions. In virtually all practical applica-
tions, the electron and ion temperatures are never excessively
disparate, and we can therefore impose the mild restriction

�eme � �imi. �B15�

We will refer to the condition �B15� as the me→0 limit, and
the ratio �eme /�imi can then be used as a small dimension-
less expansion parameter. For example, to leading order in
this parameter we find

1

�total�v��i

�i�v� = 1 + O��eme

�imi
�1/2

, �B16�

which allows us to express Eq. �B14� as

CeI,R
� =

	e
2

2�
��eme

2�
�1/2 i

2�
�

−�

�

dvvF�v�ln�F�v�
	e

2 �
1 + O��eme

�imi
�1/2� . �B17�

We have omitted the exponential in the integrand of Eq.
�B14�, since the function F�v� provides enough convergence
at large values of v to allow the me→0 limit to be brought
inside the integral. The analytic properties of F�v� allow us
to perform the v integral in Eq. �B17� using contour integral
techniques, in much the same manner as we did in the dis-

cussion following Eq. �8.9� in the text. The result is Eq.
�12.44� of BPS, which reads

�eme � �imi: CeI,R
� = −

1

2

	e
2

2�
��eme

2�
�1/2

�
i

�i
2,

�B18�

a much simpler expression indeed. For the electrons and ions
we are considering, we can also drop the term of order
�eme /�imi in Eq. �B3�, allowing us to express the quantum
parameter of Eq. �B4� as

�̄ei =
Zie

2

4��
�me

Te
= Zi�̄e. �B19�

On occasion, we will express the quantum parameter in
terms of the binding energy of the hydrogen atom,

�H =
1

2
� e2

4�
�2me

�2 � 13.606 eV, �B20�

so that

�̄ei
2 = Zi

22�H

Te
. �B21�

We see that �̄ei�1 when Te reaches the keV scale, illustrat-
ing that quantum corrections are important at high tempera-
tures. Finally, we can drop terms of order �eme /�imi in the
leading coefficients of Eqs. �B8� and �B9�, thereby allowing
us to write

�eme � �imi:

CeI,S
C + CeI

�Q = −
	e

2

2�
��eme

2�
�1/2

�
i

�i
2�ln�Zie

2

4�

	e

4Te
�

+ 2
 +
1

2
�

0

�

d�e−�/2Re ��1 + i
Zi�̄e

�1/2 �
− ln�Zi�̄e

�1/2 ��� . �B22�

Unlike Eq. �B18�, which only holds for the sum over ion
components, the result �B22� actually holds component by
component. Performing the � integral for the last term in Eq.
�B22� gives

�eme � �imi:

CeI,S
C + CeI

�Q =
	e

2

2�
��eme

2�
�1/2

�
i

�i
2

2 ln�8meTe

�2	e
2 �

− 3
 − �
0

�

d�e−�/2 Re ��1 + i
�̄ei

�1/2�� .

�B23�

The rate CeI is given by adding Eqs. �B18� and �B23�, which
can be written as
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�eme � �imi: CeI =
	e

2

2�
��eme

2�
�1/21

2�
i

�i
2ln�8meTe

�2	e
2 �

− 
 − 1 − �i��̄ei�� , �B24�

with

�i��̄ei� = �
0

�

d�e−�/2Re ��1 + i
�̄ei

�1/2� + 
� . �B25�

This expression is accurate to leading and next-to-leading
order in the plasma coupling, and to all orders in �̄ei, with no
restriction on the temperature �apart from requiring the mild
constraint �B15� and that the plasma coupling be small�.

With the aid of Eq. �10.17� of BPS,

Re ��1 + i�̄�−1/2� + 
 = �
k=1

�
1

k

�̄2

k2� + �̄2 , �B26�

and writing

1

� + �̄2/k2 =
d

d�
ln�� +

�̄2

k2 � , �B27�

a partial integration now gives

�i��̄ei� = �̄ei
2 �

k=1

�
1

k3ln� k2

�̄ei
2 � +

1

2
�

0

�

d�e−�/2 ln�� +
�̄ei

2

k2 �� .

�B28�

In the latter form, we can easily extract the leading order
term �̄ei, since we can use the limit

�̄ei → 0:
1

2
�

0

�

d�e−�/2 ln�� +
�̄ei

2

k2 �
→ �

0

�

d��/2�e−�/2�ln	�/2
 + ln 2� = − 
 + ln 2.

�B29�

Using now

��3� = �
k=1

�
1

k3 = 1.202 05 . . . , �B30�

and

���3� = − �
k=1

�
1

k3 ln k = − 0.198 12 . . . , �B31�

we can express the subleading quantum correction as

�i��̄ei� � �̄ei
2���3�ln� 2

�̄ei
2 � − 
� − 2���3�� . �B32�

Using Eq. �B21�, we can express the rate �B24� to leading
and next-to-leading order in �̄ei as

CeI =
�I

2

2�
��eme

2�
	e

21

2
ln� 8Te

2

�2�e
2� − 
 − 1�

−
1

2�
��eme

2�
	e

2�H

Te
�

i

Zi
2�i

2��3��ln� Te

Zi
2�H

� − 
�
− 2���3�� . �B33�

The correction is of order �H /Te, which can be of comparable
size to the leading degeneracy correction.
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